تدوین و اعتبارسنجی مدل رگرسیون چندمتغیره و چندسطحی عملکرد تحصیلی دانشجویان در دانشگاههای غیرانتفاعی ایران: تحلیل اثرات متغیرهای فردی و نهادی
چکیده
هدف: این پژوهش باهدف بررسی رفتار پذیرش فناوری در حوزه بانکداری اینترنتی و شناسایی عوامل مؤثر بر تمایل مشتریان به استفاده از خدمات آنلاین بانکی انجام شده است. اهمیت مطالعه از آنجا ناشی میشود که توسعه خدمات بانکداری اینترنتی بهعنوان یکی از پایههای تحول دیجیتال در نظام بانکی، نیازمند شناخت دقیق ادراک مشتریان از سهولت، سودمندی و نگرش آنها نسبت به این سیستمها است.
روششناسی پژوهش: این تحقیق از نظر هدف کاربردی و از نظر روش، توصیفی–پیمایشی است. جامعه آماری شامل تمامی استفادهکنندگان خدمات اینترنتی بانک پاسارگاد شیراز بوده و با توجه به نامحدود بودن جامعه، نمونه ۳۸۴ نفر با روش نمونهگیری در دسترس انتخاب شد. ابزار پژوهش پرسشنامه استاندارد دیویس بوده و برای تحلیل دادهها از آزمون نرمال بودن کولموگروف–اسمیرنف و ضریب همبستگی اسپیرمن جهت آزمون فرضیات استفاده شد.
یافتهها: نتایج نشان داد سهولت ادراکشده اثر مثبت و معناداری بر سودمندی ادراکشده و نگرش مشتری دارد. همچنین سودمندی ادراکشده هم نگرش و هم قصد استفاده را تحت تاثیر مستقیم قرار میدهد. نگرش نیز رابطه مثبت و معناداری با قصد استفاده دارد و نهایتا، قصد استفاده بهطور مستقیم با استفاده واقعی از بانکداری اینترنتی در ارتباط است. تمام فرضیات پژوهش در سطح خطای %5 تایید شدند.
اصالت/ارزشافزوده علمی: این مطالعه با بهکارگیری مدل پذیرش فناوری در بستر واقعی خدمات بانکی ایران، شواهد تجربی تازهای درباره نقش ادراک سهولت و سودمندی در رفتار مشتریان ارایه میدهد. یافتهها میتواند بینش کاربردی برای مدیران بانکی جهت بهبود تجربه مشتری، توسعه سامانههای آنلاین و افزایش میزان پذیرش خدمات دیجیتال فراهم کند.
کلمات کلیدی:
پذیرش فناوری، بانکداری اینترنتی، سودمندی ادراکشده، سهولت ادراکشده، قصد استفادهمراجع
- [1] Rezaeian, M, & Tavakol, M. (2020). The effects and consequences of activityof non-governmental non-profit higher education institutions and universities activities. Rahyaft, 29(4), 23-40. (In Persian). https://doi.org/10.22034/rahyaft.2020.13796
- [2] Moradi, T. (2023). What is the student-to-professor ratio in Iranian universities?. (In Persian). http://www.isna.ir/xdPRgh
- [3] Moradi, H. (2018). Investigating the relationship between tax planning, corporate governance and equity value in companies listed on the tehran stock exchange. The second national conference on accounting, management and economics with a sustainable employment approach and its role in industry growth. Malayer, Iran. Civilica. (In Persian). https://civilica.com/doc/844486
- [4] Seyyedmoharrami, I., Kareshki, H., Kimiaei, S. A., & Bordbar, M. (2024). The pattern of individual and family factors affecting the academic success of high school students in less-privileged areas: Grounded theory. Educational research in medical sciences, 17(4), 344-354. (In Persian). http://edcbmj.ir/article-1-3149-fa.html
- [5] Ortiz-de-Villate, C., Rodríguez-Santero, J., & Torres-Gordillo, J.-J. (2021). Contextual, personal and family factors in explaining academic achievement: A multilevel study. Sustainability, 13(20), 11297. https://doi.org/10.3390/su132011297
- [6] Hosseinkhani, Z., Hassanabadi, H., Parsaeian, M., & Nedjat, S. (2020). Epidemiologic assessment of self-concept and academic self-efficacy in Iranian high school students: Multilevel analysis. Journal of education and health promotion, 9(1). https://doi.org/10.4103/jehp.jehp_445_20
- [7] Goldstein, H., Browne, W., & Rasbash, J. (2002). Partitioning variation in multilevel models. Understanding statistics, 1(4), 223–231. https://doi.org/10.1207/S15328031US0104_02
- [8] Sengul, O., Zhang, X., & Leroux, A. J. (2019). A Multi-Level Analysis of Students’ Teacher and Family Relationships on Academic Achievement in Schools. International journal of educational methodology, 5(1), 117–133. https://doi.org/10.12973/ijem.5.1.131
- [9] Farrington, C. A., Roderick, M., Allensworth, E., Nagaoka, J., Keyes, T. S., Johnson, D. W., & Beechum, N. O. (2012). Teaching adolescents to become learners: The role of noncognitive factors in shaping school performance-A critical literature review. Consortium on chicago school research. https://eric.ed.gov/?id=ED542543
- [10] Astin, A. W., & Denson, N. (2009). Multi-campus studies of college impact: Which statistical method is appropriate? Research in higher education, 50(4), 354–367. https://doi.org/10.1007/s11162-009-9121-3
- [11] Akay, E., & Karadag, E. (2019). Multilevel analyses of student, parent, and school indicators of achievement in high school transition in Turkey. School community journal, 29(2), 31–62. https://eric.ed.gov/?id=EJ1236580
- [12] Jama Ali, M., Chesneau, C., & Muse, A. H. (2024). Examining the determinants of student academic performance in Somaliland: Estimating unobserved effects at student and school levels using multi-level logistic regression. Cogent education, 11(1), 2436293. https://doi.org/10.1080/2331186X.2024.2436293
- [13] Wang, X., Dai, M., & Mathis, R. (2022). The influences of student- and school-level factors on engineering undergraduate student success outcomes: A multi-level multi-school study. International journal of stem education, 9(1), 23. https://doi.org/10.1186/s40594-022-00338-y
- [14] Gutiérrez-Monsalve, J. A., López-Velásquez, J. F., Grisales, J. A. C., & Segura-Cardona, Á. M. (2024). Factors related to academic performance in higher education: A multilevel approach. Cultura educación sociedad, 15(1). https://doi.org/10.0410/cata/7ecbec30d00d192e2f846aed51f1294c%0A
- [15] Su, A., & He, W. (2020). Exploring factors linked to the mathematics achievement of ethnic minority students in China for sustainable development: A multilevel modeling analysis. Sustainability, 12(7), 2755. https://doi.org/10.3390/su12072755
- [16] Xue, Y., Xuan, X., Zhang, M., Li, M., Jiang, W., & Wang, Y. (2020). Links of family- and school-level socioeconomic status to academic achievement among Chinese middle school students: A multilevel analysis of a national study. International journal of educational research, 101, 101560. https://doi.org/10.1016/j.ijer.2020.101560
- [17] Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. SAGE Publications. https://books.google.nl/books?id=uyCV0CNGDLQC
- [18] Astin, A. W. (1997). What matters in college? Four critical years revisited. Wiley. https://books.google.nl/books?id=2rtPEQAAQBAJ
- [19] Tinto, V. (2012). Leaving college: Rethinking the causes and cures of student attrition. University of Chicago Press. https://books.google.nl/books?id=TlVhEAAAQBAJ
- [20] Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of educational psychology, 82(1), 33. https://psycnet.apa.org/buy/1990-21075-001
- [21] Khanna, L., Singh, S. N., & Alam, M. (2018). Multidimensional analysis of psychological factors affecting students academic performance. CoRR, ABS/1806.0. https://doi.org/10.48550/arXiv.1806.03242
- [22] Bandura, A. (1997). Self-efficacy: The exercise of control. Macmillan. https://www.amazon.com/Self-Efficacy-Exercise-Control-Albert-Bandura/dp/0716728508
- [23] Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychological inquiry, 11(4), 227–268. https://doi.org/10.1207/S15327965PLI1104_01
- [24] Wentzel, K. R. (1998). Social relationships and motivation in middle school: The role of parents, teachers, and peers. Journal of educational psychology, 90(2), 202-209. https://psycnet.apa.org/doi/10.1037/0022-0663.90.2.202
- [25] Kuh, G. D., & Hu, S. (2001). The effects of student-faculty interaction in the 1990s. The review of higher education, 24(3), 309–332. https://doi.org/10.1353/rhe.2001.0005
- [26] Sloan, R. G. (1996). Do stock prices fully reflect information in accruals and cash flows about future earnings? The accounting review, 71(3), 289–315. https://www.cuhk.edu.hk/acy2/workshop/June2009Wasley/1996TAR).pdf
- [27] Snijders, T. A., & Bosker, R. (2011). Multilevel analysis: An introduction to basic and advanced multilevel modeling. Sage Publications. https://www.torrossa.com/en/resources/an/4912508
- [28] Pintrich, P. R. (1991). A manual for the use of the motivated strategies for learning questionnaire (MSLQ). National center for research to improve postsecondary teaching and learning. https://files.eric.ed.gov/fulltext/ED338122.pdf
- [29] Ahmadi, S. (2023). Facilities quality scale: A researcher-constructed questionnaire for assessing university students’ satisfaction with educational and welfare facilities.
- [30] Hox, J., Moerbeek, M., & Van de Schoot, R. (2017). Multilevel analysis: Techniques and applications. Routledge. https://doi.org/10.4324/9781315650982
- [31] Panadero, E. (2017). A review of self-regulated learning: Six models and four directions for research. Frontiers in psychology, 8, 422. https://doi.org/10.3389/fpsyg.2017.00422
- [32] Pascarella, E. T., Terenzini, P. T., & Hibel, J. (1978). Student-faculty interactional settings and their relationship to predicted academic performance. The journal of higher education, 49(5), 450–463. https://doi.org/10.1080/00221546.1978.11780395
- [33] Bolatimi OS, B. F. (2025). Student satisfaction with university facilities and services and its impact on academic performance: A study in higher education. https://doi.org/10.21203/rs.3.rs-6359552/v1
- [34] Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting mixed methods research. SAGE Publications. https://books.google.com/books?id=eTwmDwAAQBAJ